
Proceedings of Machine Learning Research vol vvv:1–17, 2025

Neural Port-Hamiltonian Differential Algebraic Equations for
Compositional Learning of Electrical Networks

Cyrus Neary* CYRUS.NEARY@MILA.QUEBEC
Mila – Quebec AI Institute & Université de Montréal, Canada
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Abstract
We develop compositional learning algorithms for coupled dynamical systems. While deep

learning has proven effective at modeling complex relationships from data, compositional cou-
plings between system components typically introduce algebraic constraints on state variables,
posing challenges to many existing data-driven approaches to modeling dynamical systems. To-
wards developing deep learning models for constrained dynamical systems, we introduce neu-
ral port-Hamiltonian differential algebraic equations (N-PHDAEs), which use neural networks to
parametrize unknown terms in both the differential and algebraic components of a port-Hamiltonian
DAE. To train these models, we propose an algorithm that uses automatic differentiation to perform
index reduction, automatically transforming the neural DAE into an equivalent system of neural or-
dinary differential equations (N-ODEs), for which established model inference and backpropaga-
tion methods exist. The proposed compositional modeling framework and learning algorithms may
be applied broadly to learn control-oriented models of dynamical systems in a variety of application
areas, however, in this work, we focus on their application to the modeling of electrical networks.
Experiments simulating the dynamics of nonlinear circuits exemplify the benefits of our approach:
the proposed N-PHDAE model achieves an order of magnitude improvement in prediction accu-
racy and constraint satisfaction when compared to a baseline N-ODE over long prediction time
horizons. We also validate the compositional capabilities of our approach through experiments on
a simulated D.C. microgrid: we train individual N-PHDAE models for separate grid components,
before coupling them to accurately predict the behavior of larger-scale networks.
Keywords: Physics-informed machine learning, port-Hamiltonian neural networks, neural differ-
ential algebraic equations, compositional deep learning

1. Introduction

Many physical systems, such as electrical networks, chemical reaction networks, and multi-body
mechanical systems, comprise many interacting subsystems. Such systems not only exhibit complex
dynamics, but are often subject to algebraic constraints that enforce compositional relationships
between the subsystems (e.g., energy balance, conservation laws, or geometric couplings).

Deep learning methods that use physics-inspired architectures and training losses have shown
promise in learning data-efficient models of unconstrained dynamical systems (Raissi et al., 2019;
Chen et al., 2018; Djeumou et al., 2022, 2023). However, such methods are currently unable to learn
models that respect the aforementioned algebraic constraints. This limitation renders compositional
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Eẋ = Jzθ − rθ +Bu

Topology-Dependent Terms

Parametrized Unknown Terms

Neural Port-Hamiltonian DAE

ω̇ = fθ(ω, t)

Equivalent Neural ODE

§4.1 §4.2

Figure 1: The proposed neural port-Hamiltonian differential algebraic equations (N-PHDAE). The
proposed algorithm uses the topology of the subsystem interconnections to automatically construct a
differential algebraic equation (DAE) whose unknown terms are parametrized using neural networks
(§4.1). It then transforms the resulting neural DAE into an equivalent system of neural ordinary
differential equations (§4.2) for inference and training (§4.3).

approaches to modeling challenging, acting as a barrier to the application of deep-learning-based
models for the prediction and control of many real-world systems. For example, the complexity that
arises from large numbers of interacting components can make monolithic approaches to learning
system models intractable. Furthermore, in many applications, system-level data may not be avail-
able for training by a single algorithm. Moreover, the inability of existing deep learning methods
to enforce critical constraints can result in models that are not interpretable or robust, and prone to
failure in scenarios outside the training data distribution.

Towards addressing these limitations, we introduce Neural Port-Hamiltonian Differential Al-
gebraic Equations (N-PHDAEs), a physics-informed and compositional deep learning approach to
modeling dynamical systems subject to algebraic constraints. Such models may be used broadly to
learn control-oriented models of dynamical systems in a variety of application areas, however, in
this work, we focus primarily on their application to modeling electrical networks.

Figure 1 illustrates the proposed approach. The method begins by using the graph structure of
the circuit to automatically construct the interconnection terms of a Port-Hamiltonian Differential
Algebraic Equation (PHDAE) (Duindam et al., 2009; Van Der Schaft et al., 2014; Mehrmann and
Morandin, 2019; Günther et al., 2021), which describes the interconnection topology of the sys-
tem’s components. The remaining terms in the PHDAE (which capture the nonlinear dynamics
of the circuit components) are parametrized using neural networks (§4.1). We then use automatic
differentiation to transform the resulting neural DAE into a system of Neural Ordinary Differential
Equations (N-ODEs) (§4.2), which can be more easily trained and evaluated (§4.3).

To learn compositional models of electrical networks, we additionally propose a framework and
algorithms to compose N-PHDAEs by coupling their inputs and outputs (§5), as illustrated in Figure
2. Separate N-PHDAEs are trained on data generated by individual subsystems. The trained models
are then coupled through an interconnection matrix that defines the input-output relationships at the
circuit nodes where the couplings occur. The result is a composite N-PHDAE whose solution yields
predictions for the overall system.

We demonstrate the advantages of the N-PHDAE through case studies on simulated electrical
networks. A N-PHDAE model of the nonlinear FitzHugh-Nagumo circuit demonstrates the model’s
data efficiency and accuracy, as well as its ability to learn to satisfy the system’s algebraic equa-
tions an order of magnitude more accurately than the considered baseline approach—a N-ODE that
does not leverage prior physics knowledge or explicitly account for algebraic equations. Next, we
showcase the compositional modeling capabilities of the N-PHDAE by using it to simulate a large
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Figure 2: The compositionality of the proposed N-PHDAEs (§5). By coupling individually trained
N-PHDAE models of subsystem dynamics, we obtain a composite N-PHDAE model that generates
accurate predictions of more complex system dynamics, such as the DC microgrid example illus-
trated above and discussed further in §6.

DC microgrid. More specifically, we train multiple N-PHDAE models of distributed generation
units (DGU) separately, before composing the learned DGU models in unseen configurations to
accurately simulate larger electrical networks.

2. Related Work

Methods that leverage physics knowledge in deep learning algorithms have been studied extensively
in recent years. For example, Lu et al. (2021); Raissi et al. (2019); Raissi (2018); Karniadakis et al.
(2021); Han et al. (2018); Sirignano and Spiliopoulos (2018); Long et al. (2018, 2019) use neural
networks and deep learning training algorithms to solve partial differential equations. By contrast,
our work focuses on the problem of system identification—learning unknown dynamics from time
series data. More closely related to our work, Neural Ordinary Differential Equations (N-ODEs)
are a family of deep learning architectures that use neural networks to parametrize the right-hand
side of ODEs. Originally proposed by Chen et al. (2018) in the context of generative modeling,
N-ODEs provide a flexible framework for incorporating prior physics knowledge with data-driven
models of dynamical systems, yielding models with improved data efficiency and generalization
capabilities, especially when training data is limited (Djeumou et al., 2022, 2023; Rackauckas et al.,
2020; Kidger, 2021; Neary, 2024; Zhong et al., 2021; Greydanus et al., 2019). However, N-ODEs
struggle to model constrained dynamical systems, often relying on penalty-based methods to enforce
known algebraic equations.

In particular, without significant modification, N-ODEs are unable to model systems that include
algebraic constraints on the state variables. Such DAEs—systems of both differential and algebraic
equations—arise frequently in the modeling of physical systems, especially when accounting for
couplings between distinct subsystems. Recently, several approaches to learning DAEs from data
have been proposed (Xiao et al., 2022; Moya and Lin, 2023; Huang et al., 2024; Koch et al., 2024).
These methods rely on learned predictors for the algebraic states or latent variables, which are then

3



NEARY TSAO TOPCU

used to integrate the DAE. However, such learned predictors are often trained to fit the available
data directly, without leveraging prior physics-based inductive biases that could enhance data effi-
ciency and generalization. By contrast, we directly incorporate algebraic constraints into the neural
network architecture and inference procedure, enabling the training of constraint-respecting and
data-efficient models of dynamical systems.

Closely related to our work, Zhong et al. (2020); Desai et al. (2021); Neary and Topcu (2023);
Tan et al. (2024); Duong et al. (2024); Beckers (2023) also develop algorithms that leverage the
mathematical structures defining port-Hamiltonian (PH) systems to learn dynamics models that en-
joy key PH properties, e.g., passivity. Meanwhile, Xu et al. (2022); Furieri et al. (2022); Plaza et al.
(2022) use neural networks to parametrize controllers for systems with known port-Hamiltonian
dynamics. Neary and Topcu (2023) focus on leveraging the properties of PH systems to build com-
positional learning algorithms. We extend this work by introducing the first port-Hamiltonian neural
networks that explicitly account for algebraic equations, broadening their applicability to a broader
range of problems and enabling more intuitive compositional coupling of subsystem models.

3. Background

Port-Hamiltonian Differential Algebraic Equations. The port-Hamiltonian (PH) framework
enables compositional approaches to modeling complex, interconnected systems in a structured
and modular way. Conceptually, the dynamics of individual PH systems are governed by the sys-
tem’s Hamiltonian function H , energy dissipation terms, and control inputs. Separate PH systems
can be coupled via energy exchanges through so-called port variables to obtain new PH systems
that represent the dynamics of larger composite systems. We refer to Van der Schaft and Maschke
(2013); Van Der Schaft et al. (2014) for further details.

In this work, we consider port-Hamiltonian differential algebraic equations (PHDAEs)—a broad
class of PH systems that include both differential and algebraic equations, and can be written as

d

dt
Ex(t) = Jz(x(t)))− r(z(x(t))) +Bu(t). (1)

Here x ∈ Rn is the system’s state, z : Rn → Rn is the effort (a vector-valued function that includes
gradients of the system’s Hamiltonian function H(x)), E ∈ Rn×n is the flow matrix, J ∈ Rn×n is
the skew-symmetric interconnection matrix, r : Rn → Rn is the dissipation term, B ∈ Rn×m is the
port matrix, and u ∈ Rm is the control input (Mehrmann and Morandin, 2019).

Port-Hamiltonian Differential Algebraic Equations for Electrical Networks. PHDAEs pro-
vide a general framework for energy-based modeling and control of complex dynamics. Electrical
circuits may be modeled in PHDAE form as follows (Günther et al., 2021).

d

dt


AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0



qC
ϕL

e
jV

 =


0 −AL 0 −AV

AT
L 0 0 0
0 0 0 0
AT

V 0 0 0




e
∇H(ϕL)
q(qC)
jV



−


ARg(A

T
Re)

0
AT

Ce− q(qC)
0

+


−AI 0
0 0
0 0
0 −I

[
i(t)
v(t)

] (2)
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We note that equation (2) follows the form of (1), where the state x =
[
qTC ϕT

L eT jTV
]
∈

Rn is composed of the capacitor charges qC ∈ RnC , inductor magnetic fluxes ϕL ∈ RnL , nodal
voltages excluding ground e ∈ Rnv , and current across voltage sources jV ∈ RnV . The port-
Hamiltonian system matrices E, J , and B depend on incidence matrices (AC , AR, AL, AV , AI),
where each As ∈ {−1, 0, 1}nv×ns denotes the incidence matrices associated with the capacitors,
resistors, inductors, voltage sources, and current sources, respectively. Here, ns denotes the number
of elements of each component type. The effort function z comprises the resistor voltage-current
relation g : RnR → RnR , capacitor voltage-charge relation q : RnC → RnC , and the Hamiltonian
function H : RnL → R. The system input u(t) =

[
i(t)T v(t)T

]T ∈ Rm is comprised of the
time-dependent magnitudes of the circuit’s current and voltage sources.

Semi-Explicit, Index-1 Differential Algebraic Equations. More generally, the algorithms we
propose apply to any index-1 DAEs that may be expressed in the following semi-explicit form:

v̇ = f(v, w, t), 0 = h(v, w, t). (3)

That is, we assume the system state x ∈ Rn may be separated into so-called differential v ∈ Rd and
algebraic w ∈ Ra components, such that x = (v, w) ∈ Rn. An index-1 DAE may be transformed
into an equivalent system of ODEs by differentiating both sides of the algebraic equations 0 =
h(v, w, t), and rearranging. We note that the PHDAE (2) can be rewritten in the form of (3), with
differential states v =

[
qTC ϕT

L

]T and algebraic states w =
[
eT jTV

]T .

Neural Ordinary Differential Equations. N-ODEs are a class of deep learning model that uses
neural networks to parameterize the right-hand side of an ODE. That is, neural networks are used to
parametrize the unknown components of the time derivative fθ(·) of the state y, as in (4). fθ is then
numerically integrated to obtain predictions of the state at some future time k + T , as in (5).

ẏ = fθ(y, t) (4)

y(k + T ) = y(k) +

∫ k+T

k
fθ(y, t)dt (5)

4. Neural Port-Hamiltonian Differential Algebraic Equations

We now present Neural Port-Hamiltonian Differential Algebraic Equations (N-PHDAEs): a physics-
informed and compositional deep learning approach to modeling dynamical systems subject to al-
gebraic constraints. As described in §1, N-PHDAEs may be used to learn control-oriented models
of dynamical systems in a variety of application areas, however, in this work, we focus on their
application to modeling electrical networks.

4.1. Constructing Neural Port-Hamiltonian Differential Algebraic Equations

To begin, we assume that the interconnection topology of the system’s components is known a
priori. However, models of the individual components are unknown and must be learned from
data. Mathematically, we use the interconnection topology to derive the matrices E, J, and B in
equation (1), and we parametrize the unknown effort z(·) and dissipation r(·) functions using neural
networks, as illustrated in Figure 1.
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Figure 3: Constructing the matrix terms in the N-PHDAE from the interconnection topology of the
system components. In the context of electrical circuits, a circuit schematic is used to construct a
directed graph whose nodes represent junctions and whose edges represent electrical components.
Component-specific incidence matrices are then obtained from the directed graph, which are in turn
used to construct the matrices E, J, and B in equation (1).

In the context of electrical networks, matrices E, J , and B are expressed in terms of the
component-specific incidence matrices AC , AR, AL, AV , and AI . Figure 3 illustrates the process
of extracting these incidence matrices from a circuit schematic. The procedure begins by trans-
forming the schematic into a directed graph (V, E). The nodes V correspond to the circuit nodes,
and the directed edges E represent the electrical components connecting the nodes (e.g. resistors
or capacitors), where the edge direction aligns with the chosen convention for positive current flow.
The component incidence matrices (Ai for i ∈ {C,R,L, V, I}) are then obtained by constructing
the incidence matrix of the subgraph (V, Ei) containing only the edges Ei corresponding to each
component of type i (Günther et al., 2021). The matrices E, J, and B of the N-PHDAE are then
defined in terms of the component incidence matrices using equation (2).

We parametrize the N-PHDAE’s effort and dissipation functions using the additional physics
information that is relevant to these terms in the context of modeling electrical circuits, see equation
(2). More specifically, zθ(x) := [e, ∇Hθ(ϕL), qθ(qC), jV ]

T and rθ(x) := [ARgθ(A
T
Re), 0, A

T
Ce−

qθ(qC), 0]
T where gθ(·), qθ(·), and Hθ(·) are parametrized as neural networks.

4.2. Transforming Neural Port-Hamiltonian DAEs into Systems of Neural ODEs

Evaluating and training the constructed N-PHDAEs directly is difficult due to the challenge of solv-
ing DAEs in general. However, under appropriate conditions on the system’s interconnection topol-
ogy (Günther et al., 2021), the N-PHDAEs that result from §4.1 will always be index-1 equations
that may be converted into semi-explicit form (as described in §3).

In §4.1, we construct N-PHDAEs in the form of (1). We proceed by automatically identifying
the differential v ∈ Rd and the algebraic w ∈ Ra components of the state x, and by converting the
N-PHDAE into semi-explicit form v̇ = fθ(v, w, u, t) and 0 = hθ(v, w, u, t), where fθ(v, w, u, t)
and hθ(v, w, u, t) are functions of E, J,B, zθ(·), rθ(·), and u(t). We include derivations for these
terms in Appendix A, however, we omit them here due to space constraints.

After converting the N-PHDAE to semi-explicit form, we use automatic differentiation to trans-
form it into an equivalent system of N-ODEs via index reduction (Wanner and Hairer, 1996).[

v̇
ẇ

]
=

[
fθ(v, w, u, t)

(∇whθ(v, w, u, t))
−1(∇vhθ(v, w, u, t)fθ(v, w, u, t) +∇thθ(v, w, u, t))

]
(6)
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In (6), ∇vhθ(·) and ∇whθ(·) denote the Jacobian matrices of the algebraic constraint equations
hθ(·) with respect to the differential v and algebraic w components of the state, respectively.

4.3. Evaluating and Training Neural Port-Hamiltonian Differential Algebraic Equations

The N-PHDAE inputs are the state x(t) and control input u(t) at time t, and the prediction horizon
T . The model output is the predicted state at time t + T , i.e. x̂(t + T ) = N-PHDAE(x, u, t, T ),
obtained by numerically integrating the right-hand side of (6) using any ODE solver.

Given a training dataset D, consisting of trajectories τ of states and control inputs, we optimize
the parameters θ of the N-PHDAE by minimizing the objective (7) using gradient-based methods.

L(θ,D) =
1

|D|
∑
τ∈D

∑
(x,u,t,T,y)∈τ

||y − N-PHDAE(x, u, t, T )||22︸ ︷︷ ︸
State MSE

+ α ||hθ(x, u, t)||22︸ ︷︷ ︸
Algebraic Eqn. Penalty

(7)

Here, the target y is defined by the true state at the prediction time y = x(t+T ). The first term of L
ensures the model predictions fit the trajectory data, and the second term of L encourages hθ(x, u, t)
to be as close to zero as possible. We note that in order to evaluate (6) and to train the N-PHDAE,
the Jacobian ∇whθ(v, w, t) must be invertible. Experimentally, we found that incorporating the
algebraic equation penalty into the loss function was both essential and empirically effective in
ensuring that ∇whθ(v, w, t) remained invertible, thereby maintaining training stability. A detailed
investigation of methods to ensure this property holds in all cases is left for future work.

5. Composing Neural Port-Hamiltonian Differential Algebraic Equations

We now propose a method to compose previously learned subsystem N-PHDAEs to obtain an ac-
curate dynamics model for larger composite systems, without requiring additional training.

We define an interconnection matrix Aλ to specify the couplings between an arbitrary number
N of pre-defined subsystem N-PHDAEs. Intuitively, the entries of Aλ define couplings between
the inputs and outputs of the various subsystems. In the context of electrical networks, the coupling
relations are defined by introducing nλ new edges between the nodes of distinct subsystems. Each
new edge models a physical connection in the composite circuit, which may be modeled as a voltage
source with a voltage drop of zero and a coupling current λ (Günther et al., 2021). The coupling
leads to an additional term in Kirchhoff’s current law, modeled with an incidence matrix Aλ ∈
{−1, 0, 1}nvc×nλ describing all the new edges of the composite system, where nvc =

∑N
i=1 nvi

is the number of non-grounded nodes in all subsystems. Given the subsystem N-PHDAEs and the
interconnection matrix Aλ, the composite N-PHDAE is defined by

AC 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



qC
ϕL

e
jV
λ

 =


0 −AL 0 −AV −Aλ

AT
L 0 0 0 0
0 0 0 0 0
AT

V 0 0 0 0
AT

λ 0 0 0 0




e
∇Hθ(ϕL)
qθ(qC)
jV
λ



−


ARgθ(A

T
Re)

0
AT

Ce− qθ(qC)
0
0

+


−AI 0
0 0
0 0
0 −I
0 0


[
i(t)
v(t)

]
,

(8)
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where all subsystem state vectors are concatenated and matrices are stacked diagonally to obtain the
corresponding quantities for the composite system.

s =
[
sT1 . . . sTN

]T
, s ∈ {qC , ϕL, e, jV , gθ(A

T
Re), qθ(qC),∇Hθ(ϕL)}

AP = diag(AP1 , . . . , APN
), P ∈ (C,R,L, V, I)

The N-PHDAE of the composite system (8) can then be transformed into equivalent N-ODEs
(§4.2). The inputs and outputs of the composite N-PHDAE are defined by the concatenation of the
subsystem differential states, algebraic states, and control inputs.

6. Experimental Results

To demonstrate the strengths of the proposed N-PHDAE, we present two simulation-based case
studies. We begin by training a N-PHDAE model of a well-studied circuit with nonlinear dynamics,
before demonstrating the proposed approach to compositional modeling through experiments in-
volving interconnected DC microgrids. In all experiments, we parameterize the unknown electrical
component relations gθ, qθ and Hamiltonian Hθ of the N-PHDAE (§4.1) as multi-layer perceptrons.
The training datasets D consist of only 30 state trajectories, highlighting the data efficiency of the
N-PHDAE. We refer the reader to the Appendix B for additional experimental details. Project code
is available at https://github.com/nathan-t4/NPHDAE.

6.1. Learning the Nonlinear Dynamics of the FitzHugh-Nagumo Circuit

As an illustrative example, we begin by training a N-PHDAE model of the FitzHugh-Nagumo circuit
(Izhikevich and FitzHugh, 2006), illustrated in Figure 4, which includes a nonlinear resistor R1. We
compare the performance of the N-PHDAE to a black-box N-ODE, i.e., a neural ODE that does not
leverage physics-based priors, as presented in §3. The baseline N-ODE is parameterized using an
MLP and trained on the same dataset to minimize the mean-squared error of the model’s predictions.
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Figure 4: Left: The FitzHugh-Nagumo circuit. Right: The predicted dynamics of the system’s
state. The baseline N-ODE becomes increasingly inaccurate over long time horizons, while the
N-PHDAE maintains consistently accurate predictions.

N-PHDAEs efficiently learn accurate models of complex dynamics. Figure (4) illustrates the
predictions of the proposed N-PHDAE model over a 200-second horizon. For comparison, we
also illustrate the predictions of a baseline N-ODE. The predictions from the N-PHDAE are more
accurate than the N-ODE, especially for long horizons. This improvement is likely due to the N-
PHDAE’s ability to better satisfy the system’s algebraic constraints, discussed below.
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N-PHDAEs learn to satisfy constraint functions orders of magnitude more accurately than the
baseline approach. Figure (5) illustrates the N-PHDAE’s effectiveness at approximately satisfy-
ing the ground truth algebraic equations. In particular, we observe that the norm ||h(x̂, u, t)||22 of the
true algebraic equations evaluated on the model-predicted states is roughly an order of magnitude
lower for the N-PHDAE than the N-ODE baseline, resulting in more accurate long-term predictions.
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100
101

Time [s]

Pr
ed
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tio
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rr
or
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10−3
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||h
(x̂
,u

,t
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2 2

N-PHDAE
N-ODE

Figure 5: Left: The mean square error of the state predictions, as a function of prediction time.
Right: Model violations of true algebraic equations. The N-PHDAE model satisfies the ground
truth algebraic equations an order of magnitude more effectively than the N-ODE baseline.

6.2. Learning Compositional Models of Coupled DC Microgrids

Next, we demonstrate the compositional approach to learning introduced in §5 via experiments
simulating a DC microgrid—a low-voltage power grid operating independently from a main grid
(Cucuzzella et al., 2018). The DC microgrids we consider are powered by distributed generation
units (DGUs), such as renewal energy sources, and are interconnected by transmission lines to
disperse and store energy. We first train a N-PHDAE to model the dynamics of a DGU. Figure (6),
illustrates the N-PHDAE’s state predictions, prediction error, and a measure of the extent to which
the predictions violate constraints. As with the FitzHugh-Nagumo circuit, the N-PHDAEs modeling
individual DGUs output accurate and constraint-satisfying state predictions.

Compositions of pre-trained N-PHDAE submodels accurately simulate a larger DC microgrid
without additional training. As illustrated in Figure 2 we then compose the learned DGU models
by connecting them with transmission lines represented by known PHDAE models. To do so, we
use the composition procedure detailed in §5. We configure the DC microgrid as a complete graph
with 10 nodes, with DGUs as the nodes and transmission lines as the edges. In Figure (7), we plot
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jV
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Prediction Err.

Figure 6: Left: N-PHDAE predictions of a DGU state trajectory. Right: Mean squared error, and
violation of ground truth algebraic equations, of the predicted trajectory.
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Figure 7: Left: The fully connected DC microgrid topology, consisting of 10 interconnected N-
PHDAE submodels. Right: The charge of each DGU in the microgrid, as predicted by the composite
N-PHDAE. The composite model accurately predicts the grid dynamics without additional training.

the trajectories of the capacitor charges qC within the 10 interconnected DGUs, as predicted by the
composite N-PHDAE representing the entire microgrid. We observe that the composite N-PHDAE
model outputs accurate predictions for the entire DC microgrid, despite requiring no additional
training data from the true composite system itself.

0 1 2 3 4 5

10−4

10−3

Time [s]

Prediction Error ||h(x̂)||22

Figure 8: The state and constraint error tra-
jectories of the composite DC microgrid.

The composite N-PHDAE model continues to
satisfy system constraints. Despite the intercon-
nected dynamics of the DC microgrid, Figure 8 il-
lustrates that the composition of learned N-PHDAE
submodels continues to exhibit small prediction er-
rors and only small violations of the true algebraic
constraints. Indeed, we observe that the magni-
tude of these values are comparable to those of
N-PHDAE submodels representing the individual
DGUs, illustrated in Figure 6. The proposed N-
PHDAEs enable effective compositional approaches to learning models of coupled systems.

7. Conclusions

We introduce Neural Port-Hamiltonian Differential Algebraic Networks (N-PHDAEs), a class of
physics-informed neural networks that enables compositional approaches to learning system dy-
namics. The proposed N-PHDAEs use neural networks to parameterize unknown terms in port-
Hamiltonian dynamical systems, even when unknown terms are included in algebraic constraints
between state variables. We propose algorithms for model inference and training that use auto-
matic differentiation to transform the parametrized differential algebraic equations into equivalent
systems of Neural Ordinary Differential Equations (N-ODEs), which may be evaluated more easily.
Our experimental results demonstrate that N-PHDAEs learn data-efficient, accurate, and compo-
sitional models of electrical networks, enjoying an order of magnitude improvement to constraint
satisfaction compared to a baseline N-ODE. Future work will apply the proposed compositional
learning algorithms to a broader range of constrained and coupled dynamical systems.
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Appendix A. Transforming the N-PHDAE into Semi-Explicit Form

We explain how to rewrite the N-PHDAE as an index-1 semi-explicit DAE, as described in §4.3.
First, let the algebraic indices of E be the indices of the rows of E that are all zero, and the dif-
ferential indices of E as the indices of the rows of E with nonzero elements. Since E is generally
not invertible, we solve a least squares problem to rewrite the N-PHDAE in semi-explicit form. For
our experiments, we solve the least-square problem with reduced QR-decomposition (Trefethen and
Bau, 1997).

Let Ē be the submatrix of E that contains the rows corresponding to differential equations (i.e.
the rows with non-zero elements) and columns that multiply the differential states. Additionally, let
Q and R denote the reduced QR-decomposition of Ē, and R̄ is the submatrix of R that contains the
first d rows of R (where d is the number of differential state variables). The differential equations f
of the PHDAE in semi-explicit form may then be expressed as

v̇ =

[
q̇C
ϕ̇L

]
= fθ(v, w, u, t) = R̄†QT (Jzθ(v, w, t)− rθ(v, w, t) +Bu(t)).

The algebraic equations hθ(·) correspond to the remaining rows of the right-hand side of the N-
PHDAE, i.e., the entries of the vector output of Jzθ(v, w, t)−rθ(v, w, t)+Bu(t) that share indices
with the algebraic variables.

0 = hθ(v, w, u, t) = [Jzθ(v, w, t)− rθ(v, w, t) +Bu(t)]algIndices.

Appendix B. Additional Experimental Details

B.1. Implementation Details

The code to reproduce all numerical experiments is implemented in Python using the Jax (Bradbury
et al., 2018) and Haiku (Hennigan et al., 2020) libraries and available at https://github.com/nathan-
t4/NPHDAE. All numerical experiments are trained for 100000 epochs with a batch size of 128,
loss function hyper-parameter α = 0.01 (§4.3), and optimized using Adam. The learning rate is
initially set to 0.0001 for the N-PHDAE and 0.001 for the baseline black-box NODE, and decays
to zero with cosine annealing (Loshchilov and Hutter, 2016). The resistor and capacitor component
relations gθ, qθ and Hamiltonian Hθ of the N-PHDAE and the baseline black-box NODE are all
parameterized with multi-layer perceptions, each with two hidden layers of 100 nodes and ReLU
activation.

The training datasets are generated by rewriting the electrical network dynamics as a Port-
Hamiltonian differential algebraic equation (2). Then, the Port-Hamiltonian differential algebraic
equation is transformed to an equivalent ordinary differential equation using index reduction (§4.2),
and the state at the next time-step is obtained through numerical integration using the fourth-order
Runge-Kutta method with a fixed time-step (§4.3). For all numerical experiments, we generate 30
trajectories of 1000 time-steps for the training dataset and 10 trajectories of 10000 time-steps for
the validation dataset.

B.2. FitzHugh-Nagumo Circuit

The FitzHugh-Nagumo model is a well-studied nonlinear dynamics model of excitable biological
systems first introduced by FitzHugh (1961), and with an equivalent circuit derived by Nagumo
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et al. (1962). The governing equations of the membrane potential V and recovery variable W are
provided below, where I is the stimulus current.

V̇ = V − V 3/3−W + I

Ẇ = 0.08(V + 0.7− 0.8W )
(9)

The equivalent circuit representation shown in Figure (4) has parameter values of R2 = 0.8, L =
1/0.08, C = 1.0, E = −0.7, and I = 1.0. The capacitor voltage represents the membrane potential
V , and the inductor current represents the recovery variable W . The electrical component values are
set to match the governing equations of the circuit to (9). The equivalent PHDAE of the FitzHugh-
Nagumo circuit (2) has incidence matrices:

AC =

10
0

 , AR =

1 −1
0 1
0 0

 , AL =

 0
0
−1

 , AV =

 0
−1
1

 , AI =

10
0

 (10)

and known component relations:

r :
[
VR1 VR2

]
7→

[
V 3
R1 / 3− VR1 VR2 / R2

]
q : VC 7→ CVC

H : ϕL 7→ ϕ2
L / 2L

(11)

The initial conditions for V and W for the training datasets are sampled from the uniform distri-
bution U(−3.0, 3.0) with ∆t = 0.1. The baseline black-box neural differential ordinary equation
(NODE) is trained on the same dataset as the N-PHDAE, and is trained to optimize the mean-
squared error on the state.

L(ω, t) = 1

|D|
∑
τ∈D

∑
(ω,u,t)∈τ

||ω −NODE(ω)||22 (12)

Here ω is the state and u is the control input.

B.3. Microgrids

We use the direct current (DC) microgrid model introduced by Cucuzzella et al. (2018) for the com-
positional learning experiment. DC microgrids are small-scale power grids composed of distributed
generation units, loads, and energy storage systems.

B.3.1. DISTRIBUTED GENERATION UNIT MODEL

Distributed generation units (DGU) are small-scale electricity generators that are an alternative to
traditional power plants. For example, renewable energy sources can act as the power generation
unit in the DGU model. The equivalent PHDAE of the distributed generation unit (2) has incidence
matrices:

AC =

00
1

 , AR =

−1
1
0

 , AL =

 0
1
−1

 , AV =

10
0

 , AI =

 0
0
−1

 (13)
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and component relations:

r : VR 7→ VR / R

q : VC 7→ CVC

H : ϕL 7→ ϕ2
L / 2L

(14)

The training dataset for the distributed generation unit has ∆t = 0.01 and parameter values Rdgu =
1.2, Ldgu = 1.8, and Cdgu = 2.2.

B.3.2. TRANSMISSION LINE MODEL

The transmission lines interconnect two distributed generation units and model the grid loads. The
equivalent PHDAE of the transmission line model has incidence matrices:

AC =

00
0

 , AR =

 1
−1
0

 , AL =

 0
−1
1

 , AV =

00
0

 , AI =

00
0

 (15)

and component relations:

r : VR 7→ VR / Rtl

H : ϕL 7→ ϕ2
L / 2Ltl

(16)

The transmission line models have parameter values Rtl and Ltl sampled from the uniform distri-
bution U(0.1, 2.0).

B.3.3. OBTAINING THE MICROGRID WITH COMPOSITION

Towards simulating microgrids via composition, we need an interconnection matrix Aλ which spec-
ifies how the various distributed generation units and transmission lines are interconnected. In
the compositional learning experiments, the microgrid has a complete graph configuration with 10
nodes, with DGUs at the nodes and transmission lines at the edges. Due to space constraints, we
do not include Aλ ∈ {−1, 0, 1}165×90 for the microgrid configuration as a complete graph with
10 nodes. Instead, for illustration purposes, we include Aλ for the microgrid configuration as a
complete graph with 2 nodes:

Aλ =



0 0
0 0
1 0
0 0
0 0
0 −1
−1 0
0 0
0 1


(17)

We can then derive the composite N-PHDAE by stacking the vectors, i.e. q =
[
qT1 qT2

]
and

AC = diag(AC1, AC2). However, we emphasize that our choice of the microgrid configuration
is arbitrary; we can simulate a microgrid with any configuration using the compositional learning
framework introduced in §5 if given the corresponding interconnection matrix Aλ.
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