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Models are Cyclo-Passive by construction.
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Change in system energy is

bounded by power input by controls.
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The central question. 

How can we leverage physics-based knowledge 

to build compositional neural network models of 

dynamical systems?

Composing port-Hamiltonian neural networks

Port-Hamiltonian neural networks

Modular interconnection of ten subsystems 

without additional training:
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Theorem: Prediction error of composite 

port-Hamiltonian network is bounded by errors of 

subsystem models and errors of composition terms.  

Composite prediction errors decrease 

while training the subsystem models.
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Errors introduced 

by coupling terms
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Hamiltonian terms

Composition operation

Off-diagonal composition terms 𝐶𝑖𝑗(𝑥𝑐) can be derived from engineering knowledge or learned from data generated by the composite system.

Given: Dataset of trajectories 𝒙 𝑡1 , 𝒖 𝑡1 , … , 𝒙 𝑡𝑛 , 𝒖 𝑡𝑛 .

Objective: Learn to predict 

𝒙(𝑡𝑖+1) from 𝒙 𝑡𝑖 , 𝒖(𝒙 𝑡𝑖 , 𝑡𝑖). 𝒙(𝑡𝑖)
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The composite model predicts the dynamics 

that result from subsystem interactions.
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Model predictions
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System state Control input

The Model: Numerically integrate a parametrized ODE.
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A summary of the approach.

Enforce port-Hamiltonian structure on neural ODEs 

representing the subsystems and the composite system. 

1. Parametrize and train the subsystem               

models independently.

2. Develop a framework to compose                         

the learned submodels.

3. Leverage port-Hamiltonian structure to provide 

guarantees of useful model properties.

Independently 

learn component-

level submodels. 

Compose the 

submodels to make 

system-level predictions.
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