# **Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks**

| Cyrus Neary and Ufuk Topcu        |
|-----------------------------------|
| The University of Texas at Austin |

### The central question.

How can we leverage physics-based knowledge to build **compositional** neural network models of dynamical systems?

Independently Compose the submodels to make learn component-چ ک level submodels. system-level predictions.

## A summary of the approach.

Enforce *port-Hamiltonian* structure on neural ODEs representing the subsystems and the composite system.

- 1. Parametrize and train the subsystem models independently.
- 2. Develop a framework to compose the learned submodels.
- 3. Leverage port-Hamiltonian structure to provide guarantees of useful model properties.



# **CENTER FOR** autonomy

# **Port-Hamiltonian neural networks**

**Given:** Dataset of trajectories  $\{(\mathbf{x}(t_1), \mathbf{u}(t_1)), \dots, (\mathbf{x}(t_n), \mathbf{u}(t_n))\}$ .

System state

Control input

**Objective:** Learn to predict  $\boldsymbol{x}(t_{i+1})$  from  $\boldsymbol{x}(t_i), \boldsymbol{u}(\boldsymbol{x}(t_i), t_i)$ .  $\boldsymbol{x}(t_i) \bullet$ 



# **The Model:** Numerically integrate a parametrized ODE.



## **Composing port-Hamiltonian neural networks**



Off-diagonal composition terms  $C_{ii}(x_c)$  can be derived from engineering knowledge or learned from data generated by the composite system.

### **Theorem: Prediction error of composite** port-Hamiltonian network is bounded by errors of subsystem models and errors of composition terms.





without additional training:



cneary@utexas.edu