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The central question.

How can we leverage physics-based knowledge
to build compositional neural network models of
dynamical systems?

Independently Compose the

learn component- — submodels to make

level submodels. system-level predictions.

A summary of the approach.
Enforce port-Hamiltonian structure on neural ODEs
representing the subsystems and the composite system.

1. Parametrize and train the subsystem
models independently.

2. Develop a framework to compose
the learned submodels.

3. Leverage port-Hamiltonian structure to provide
guarantees of useful model properties.

Port-Hamiltonian neural networks
Given: Dataset of trajectories {(x(t,), u(ty)), ..., (x(tn), uty))}.

Objective: Learn to predict X(ti+1)

x(tir1) from x(e), u(x(ty), t,).
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The Model: Numerically integrate a parametrized ODE.
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Composing port-Hamiltonian neural networks
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The composite model predicts the dynamics
that result from subsystem interactions.
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Off-diagonal composition terms C;;(x.) can be derived from engineering knowledge or learned from data generated by the composite system.

Theorem: Prediction error of composite
port-Hamiltonian network is bounded by errors of
subsystem models and errors of composition terms.
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Testing Loss

Composite prediction errors decrease
107° while training the subsystem models.
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Models are Cyclo-Passive by construction.
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dH.(x) Change in system energy is
dt S U'Y hounded by power input by controls.
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Modular interconnection of ten subsystems
without additional training:

= Predicted subsystem position == True subsystem position
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