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How to Learn and Generalize From Three Minutes of Data: 
Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential Equations

Franck Djeumou, Cyrus Neary, and Ufuk Topcu
The University of Texas at Austin
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Neural SDEs yield performant controllers 
while operating beyond the training dataset

Three minutes of hexacopter data 
yields an accurate neural SDE
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Objectives: Learn data-efficient dynamics models from 
noisy state observations, while providing estimates of the 
model’s epistemic uncertainty.

Approach: Train neural stochastic differential equations 
(SDE) that leverage a priori physics knowledge, and 
that use the diffusion term to capture model uncertainty.

Model predictions 
are highly 
stochastic on 
points “far” from the 
training dataset. 

Model predictions 
are obtained by 
numerically solving 
the parametrized 
stochastic 
differential equation.
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Illustration of model uncertainty
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Offline model-based reinforcement learning for cartpole swingup problem

Methodology: use learned dynamics models as simulators for model-free RL algorithm (PPO).

Result: Model-based policies 
using Neural SDEs are just as 
performant as model-free RL, 
while requiring ×"# fewer 
system interactions. Neural 
SDE policies outperform policies 
trained using baseline models.

Reward evaluated using learned dynamics
Reward evaluated using ground truth dynamics

Dynamics model
for policy training:
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