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The central question. 

How can we incorporate physics-based knowledge into 

neural network models of dynamical systems?

Why bring physics knowledge into 

deep learning algorithms? 

To improve data efficiency and model generalization to 

previously unseen regions of the state space. 

Such a priori knowledge might arise from physical 

principles (e.g., conservation laws) or from the system's 

design (e.g., the Jacobian matrix of a robot), even if large 

portions of the system dynamics remain unknown.

A summary of the approach.

Use a neural ODE to capture the system dynamics. 

1. Develop a general framework to use physics 

knowledge to inform the structure of the network.

2. Develop an algorithm to train the model to respect 

general physics-based constraints.
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𝑀−1 𝒙 {𝐶 𝒙, ሶ𝒙 + 𝜏 𝒙, ሶ𝒙 + 𝐽 𝑥 ℑ(𝒙, ሶ𝒙, 𝒖)}

ℑ𝑛𝑜𝑟𝑚 𝒙, ሶ𝒙, 𝒖 ≥ 0

ℑ𝑡𝑎𝑛𝑔 𝒙, ሶ𝒙, 𝒖 ≤ 𝜇 ∗ ℑ𝑛𝑜𝑟𝑚 𝒙, ሶ𝒙, 𝒖

e.g.,

𝑥1
System dynamics: ሶ𝒙(𝑡) = 𝐹(𝒙 𝑡 , 𝒖(𝑥(𝑡), 𝑡))

unknown

Given: Dataset of trajectories 

𝒙 𝑡1 , 𝒖 𝑡1 , … , 𝒙 𝑡7 , 𝒖 𝑡7

Objective: Learn to predict 

𝒙(𝑡𝑖+1) from 𝒙 𝑡𝑖 , 𝒖(𝒙 𝑡𝑖 , 𝑡𝑖).
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The problem setting

𝑥2

Physics knowledge improves data efficiency Constraints hold outside the training dataset
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Baseline, no side information
𝑑

𝑑𝑡

𝒙 𝑡
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= 𝐹𝜃 𝒙 𝑡 , 𝒖 𝒙 𝑡 , 𝑡

Basic vector field structure
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𝑀−1 𝒙 𝐶 𝒙, ሶ𝒙 + 𝑔𝜃1 𝑥, ሶ𝑥, 𝑢 + 𝐽 𝑥 𝑔𝜃2(𝑥, ሶ𝑥, 𝑢)

Number of Training Steps (104)

C
o

n
s
tr

a
in

t 
L

o
s
s

Knowledge of Jacobian matrix + enforcing contact constraints

𝑔𝜃2
𝑛𝑜𝑟𝑚 𝒙, ሶ𝒙, 𝒖 ≥ 0, 𝑔𝜃2

𝑡𝑎𝑛𝑔
𝒙, ሶ𝒙, 𝒖 ≤ 𝜇 ∗ 𝑔𝜃2

𝑛𝑜𝑟𝑚 𝒙, ሶ𝒙, 𝒖
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Enforce the constraints at both

(training + unlabeled) points.

𝐿𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑑𝑎𝑡𝑎

An Illustration of the Approach Use physics knowledge to represent vector field as a composition of known 

and unknown terms. Unknown terms are parametrized by neural networks.

Constraints are enforced 

through an augmented 

Lagrangian inspired 

training algorithm:

Use physics knowledge to impose arbitrary constraints 

on the outputs and internal states of the model.

+𝜆 ∗ 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
+𝜇 ∗ 𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

2

With 𝝀 and 𝝁 updated 

automatically 

throughout training.
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