Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling

 x_1

Franck Djeumou¹, Cyrus Neary ¹, Eric Goubault², Sylvie Putot², Ufuk Topcu ¹

¹The University of Texas at Austin, United States ² LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, France

autonomo US SYSTEMS GROUP

The central question.

How can we incorporate physics-based knowledge into neural network models of dynamical systems?

Why bring physics knowledge into deep learning algorithms?

To improve data efficiency and model generalization to previously unseen regions of the state space.

Such a priori knowledge might arise from physical principles (e.g., conservation laws) or from the system's design (e.g., the Jacobian matrix of a robot), even if large portions of the system dynamics remain unknown.

A summary of the approach.

Use a neural ODE to capture the system dynamics.

- 1. Develop a general framework to use physics knowledge to inform the structure of the network.
- Develop an algorithm to train the model to respect general physics-based constraints.

The problem setting

unknown

System dynamics: $\dot{x}(t) = F(x(t), u(x(t), t))$ Control policy $u: \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^m$

An Illustration of the Approach

Use physics knowledge to represent vector field as a composition of known

and unknown terms. Unknown terms are parametrized by neural networks.

Contact: fdjeumou@utexas.edu, cneary@utexas.edu | © C. Neary, 2022