
The challenges of training Neural ODEs
Training Neural ODEs is computationally expensive:

• Model evaluations requires numerical integration.

• Parameter updates require gradient computations

through the ODE solution.

• Empirically, numerical integration becomes more

challenging as training progresses.

A summary of the approach
1. Use fixed timestep integration methods with a coarse

temporal discretization to quickly obtain approximate

evaluations.

2. Use a learned model to correct for the introduced

integration errors.

Franck Djeumou1, Cyrus Neary 1, Eric Goubault2, Sylvie Putot2, Ufuk Topcu1

1 The University of Texas at Austin, United States
2 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, France

Contact: fdjeumou@utexas.edu, cneary@utexas.edu | © C. Neary, 2022

The central question
How can we create a fast method to train neural ordinary

differential equations (neural ODEs), without incurring

performance losses in the trained model?

What are neural ODEs?
A class of deep learning models that uses neural networks

to parametrize differential equations.

How do we evaluate neural ODEs?
Numerically solve the differential equation parametrized by

the neural network 𝑓𝜃(⋅).

Learning to predict unknown stiff dynamics Supervised classification task

Taylor-Lagrange Neural Ordinary Differential Equations:

Towards Fast and Accurate Training of Neural ODEs

An Illustration of the Approach

Automatic
Differentiation

Truncated 𝑝𝑡ℎ-Order

Taylor Expansion of 𝑥𝑡

𝑥𝑡𝑖 +෍

𝑙=1

𝑝−1

Δ𝑡𝑙𝑓𝜃
𝑙
(𝑥𝑡𝑖)

Remainder expression

Δ𝑡𝑙𝑓𝜃
𝑝
(Γ)

+

Remainder Estimation

𝑓𝜃(𝑥𝑡𝑖) 𝑓𝜃
1
𝑥𝑡𝑖 , … , 𝑓𝜃

𝑝−1
𝑥𝑡𝑖

Δ𝑡

ො𝑥𝑡𝑖

𝑓𝜃
𝑝

𝑥𝑡𝑖

Γ

ො𝑥𝑡𝑖+1

Correction term for

approximation error of

Taylor expansion.

Dynamics
Network 𝑓𝜃(⋅)

Midpoint Prediction

Network Γ𝜙(⋅)

1. Fix Γ𝜙 ← Γ෡𝝓 and train 𝒇𝜽(⋅) to fit the available training data.

Use the correction term’s magnitude as a regularizer.

𝐦𝐢𝐧
𝝓

𝐿𝑜𝑠𝑠 𝑀𝑜𝑑𝑒𝑙 ෠𝜃,𝝓 ,𝑯𝒊𝒈𝒉𝑭𝒊𝒅𝒆𝒍𝒊𝒕𝒚𝑺𝒐𝒍𝒗𝒆𝒓(𝒇෡𝜽)𝐦𝐢𝐧
𝜽

𝐿𝑜𝑠𝑠 𝑀𝑜𝑑𝑒𝑙 𝜽, ෠𝜙 , 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 + 𝜆 Δ𝑡𝑝𝑓𝜃
𝑝

Γ෡𝜙
2

Training

𝒇𝜽(⋅) and 𝚪𝝓 ⋅ :
Iterate between

steps 1 and 2.

ෝ𝒙𝒕𝒊+𝟏 = ෝ𝒙𝒕𝒊 + 𝚫𝒕𝒇𝜽 ෝ𝒙𝒕𝒊 +⋯+ 𝚫𝒕𝒑−𝟏𝒇𝜽
𝒑−𝟏

(ෝ𝒙𝒕𝒊)

+ 𝚫𝒕𝒑𝒇𝜽
[𝒑]

ෝ𝒙𝒕𝒊 + 𝚪 ෝ𝒙𝒕𝒊 , 𝚫𝒕 𝒇𝜽(ෝ𝒙𝒕𝒊)

2. Fix 𝑓𝜃 ← 𝑓෡𝜽 and train 𝚪𝝓(⋅) on data generated using

a high-fidelity ODE solver to integrate 𝑓෡𝜃(⋅).

Truncated 𝑝𝑡ℎ-Order Taylor Expansion of 𝑥𝑡

Correction term for expansion error

TL-NODE is 20x faster than the baseline,

and 5x more accurate than other fixed-timestep methods.

Training Steps (× 103)

TL-NODE w/o correction

RK4

(OURS) TL-NODE

Baseline

Error value

(× 10−5)

(OURS) TL-NODE: 31.9s

TL-NODE w/o correction: 21.2s

RK4: 35.8s

Baseline: 609.8s

Wall-Clock Training Times (Seconds)

0 100 200 300 400 500 600

(Lower is

better)

Prediction Error on Test Dataset

Training and evaluating TL-NODEs is

16x faster than the baseline method

while enjoying the same level of accuracy.

TL-NODEs requires the

fewest number of evaluations (NFE) of 𝒇𝜽(⋅)
per solution of the neural ODE.

S
c
o
re

 r
e
la

ti
v
e
 t

o
 b

a
s
e
lin

e

Performance on MNIST Classification

Baseline

(OURS) TL-NODE

Existing state of the art

TL-NODE w/o correction

Accuracy

(higher is

better)

NFE

(lower is

better)

Train Time

(lower is

better)

Eval Time

(lower is

better)

𝑥(𝑡)

𝑡
𝑥

𝑡𝐻−1…

…

Δ𝑡

𝑇𝑡1

Integration Correction

ሶ𝑥(𝑡) = 𝑓𝜃(𝑥(𝑡))

i.e. Given initial state 𝑥 and prediction time 𝑇, solve:

𝑁𝑒𝑢𝑟𝑎𝑙𝑂𝐷𝐸𝜃 𝑥, 𝑇 = 𝑥 + න
0

𝑇

𝑓𝜃 𝑥 𝑠 𝑑𝑠

	Slide 1

