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The central question The challenges of training Neural ODEs
How can we create a fast method to train neural ordinary Training Neural ODEs Is computationally expensive:
differential equations (neural ODES), without incurring * Model evaluations requires numerical integration.
performance losses in the trained model? « Parameter updates require gradient computations
through the ODE solution.
What are neural ODES? « Empirically, numerical integration becomes more
A class of deep learning models that uses neural networks challenging as training progresses.
to parametrize differential equations.
o A summary of the approach
2(8) =| fo(x ()| 2% < oo 1. Use fixed timestep integration methods with a coarse
N temporal discretization to quickly obtain approximate
How do we evaluate neural ODES? evaluations.
Numerically solve the differential equation parametrized by 2. Use alearned model to correct for the introduced
the neural network f5(-). integration errors.
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Trainingd . 1. Fix I'y < F<7> and train [4(-) to fit the available training data. 2. Fix fg < fgandtrain I;(-) on data generated using
{:9(') and Ty, (-): Use the correction term’s magnitude as a regularizer. a high-fidelity ODE solver to integrate f5(").

erate between
steps 1 and 2. R 2 _ ~ ] . ]
mein [Loss(Model(H, ¢), TrainData) + A HAtpr[p] (F;ﬁ) H ] min Loss(Model(8,¢), HighFidelitySolver(fy))

Learning to predict unknown stiff dynamics Supervised classification task

TL-NODE iIs 20x faster than the baseline,

and 5x more accurate than other fixed-timestep methods. Training and evaluating TL-NODES is

16x faster than the baseline method

Wall-Clock Training Times (Seconds) while enjoying the same level of accuracy.
Baseline: 609.8s TL-NODEs requires the
RK4: 35.8s fewest number of evaluations (NFE) of fo()
(OURS) TL-NODE: 31.9s per solution of the neural ODE.
TL-NODE w/o correction: 21.2s
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