
The challenges of training Neural ODEs
Training Neural ODEs is computationally expensive:

• Model evaluations requires numerical integration.

• Parameter updates require gradient computations 

through the ODE solution.

• Empirically, numerical integration becomes more 

challenging as training progresses.

A summary of the approach
1. Use fixed timestep integration methods with a coarse 

temporal discretization to quickly obtain approximate 

evaluations.

2. Use a learned model to correct for the introduced 

integration errors.
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The central question
How can we create a fast method to train neural ordinary 

differential equations (neural ODEs), without incurring 

performance losses in the trained model?

What are neural ODEs?
A class of deep learning models that uses neural networks 

to parametrize differential equations.

How do we evaluate neural ODEs?
Numerically solve the differential equation parametrized by 

the neural network 𝑓𝜃(⋅). 

Learning to predict unknown stiff dynamics Supervised classification task

Taylor-Lagrange Neural Ordinary Differential Equations:

Towards Fast and Accurate Training of Neural ODEs

An Illustration of the Approach
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Network 𝑓𝜃(⋅)
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Network Γ𝜙(⋅)

1. Fix Γ𝜙 ← Γ෡𝝓 and train 𝒇𝜽(⋅) to fit the available training data. 

Use the correction term’s magnitude as a regularizer.
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Training 

𝒇𝜽(⋅) and 𝚪𝝓 ⋅ :
Iterate between 

steps 1 and 2. 
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2. Fix   𝑓𝜃 ← 𝑓෡𝜽 and train 𝚪𝝓(⋅) on data generated using 

a high-fidelity ODE solver to integrate 𝑓෡𝜃(⋅).
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Correction term for expansion error

TL-NODE is 20x faster than the baseline,                                                          

and 5x more accurate than other fixed-timestep methods.
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Prediction Error on Test Dataset 

Training and evaluating TL-NODEs is 

16x faster than the baseline method

while enjoying the same level of accuracy.

TL-NODEs requires the 

fewest number of evaluations (NFE) of 𝒇𝜽(⋅)
per solution of the neural ODE.
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Integration Correction

ሶ𝑥(𝑡) = 𝑓𝜃(𝑥(𝑡))

i.e. Given initial state 𝑥 and prediction time 𝑇, solve:

𝑁𝑒𝑢𝑟𝑎𝑙𝑂𝐷𝐸𝜃 𝑥, 𝑇 = 𝑥 + න
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