Taylor-Lagrange Neural Ordinary Differential Equations:

Towards Fast and Accurate Training of Neural ODEs
Franck Djeumou?, Cyrus Neary !, Eric Goubault?, Sylvie Putot?, Utuk Topcu? aquTonomous

1The University of Texas at Austin, United States SYSTEMS GROUP
2 LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France

The central question The challenges of training Neural ODEs
How can we create a fast method to train neural ordinary Training Neural ODEs Is computationally expensive:
differential equations (neural ODES), without incurring * Model evaluations requires numerical integration.
performance losses in the trained model? « Parameter updates require gradient computations
through the ODE solution.
What are neural ODES? « Empirically, numerical integration becomes more
A class of deep learning models that uses neural networks challenging as training progresses.
to parametrize differential equations.
o A summary of the approach
2(8) =| fo(x ()| 2% < oo 1. Use fixed timestep integration methods with a coarse
N temporal discretization to quickly obtain approximate
How do we evaluate neural ODES? evaluations.
Numerically solve the differential equation parametrized by 2. Use alearned model to correct for the introduced
the neural network f5(-). integration errors.
x(t)4 | . At !
l.e. Given initial state x and prediction time T, solve: Integration _# Correction A /I
T
NeuralODEg(x,T) = x +f fo(x(s))ds X = | |
X t1 ty-1 T ;

~ o ~ -1 [p_l] ~ th_ i
xti+1 — xt,- + Atfe (xti) + ...+ AtP fe (xt,-) } Truncated p'"*-Order Taylor Expansion of x;

An lllustration of the Approach . N N | |
+ Atpfe (xti + F(xti' At)f‘9 (xti))} Correction term for expansion error

Dynamics Truncated pt*-Order
. 1 -1 I %
. » NetwoLk fo(*) fo(xe,) | Automatic fe[](xti),___, fg[p](xti)* Taylor IIjE_xlpansmn of x; n X, ’
i _,D%;%E%_’ Differentiation N Z At (x,) ;
- 0L %\J{}”:/ i 0 i
o [p] =1
fo (xti) Correction term for

—— 1 approximation error of
Taylor expansion.

Midpoint Prediction
T Network T (-)

» Remainder expression

|
| . AtLAPNT)
At : > I

. |
Trainingd . 1. Fix I'y < F<7> and train [4(-) to fit the available training data. 2. Fix fg < fgandtrain I;(-) on data generated using
{:9(') and Ty, (-): Use the correction term’s magnitude as a regularizer. a high-fidelity ODE solver to integrate f5(").

erate between
steps 1 and 2. R 2 _ ~] .]
mein [Loss(Model(H, ¢), TrainData) + A HAtpr[p] (F;ﬁ) H] min Loss(Model(8,¢), HighFidelitySolver(fy))

Learning to predict unknown stiff dynamics Supervised classification task

TL-NODE iIs 20x faster than the baseline,

and 5x more accurate than other fixed-timestep methods. Training and evaluating TL-NODES is

16x faster than the baseline method

Wall-Clock Training Times (Seconds) while enjoying the same level of accuracy.
Baseline: 609.8s TL-NODEs requires the
RK4: 35.8s fewest number of evaluations (NFE) of fo()
(OURS) TL-NODE: 31.9s per solution of the neural ODE.
TL-NODE w/o correction: 21.2s
0 100 200 300 400 500 600 o Performance on MNIST Classification
-
Prediction Error on Test Dataset D 9 _ Il Baseline
Error value _‘3 = (OURS) TL-NODE
B) : Existing state of the art
(x107°) 10 TL-NODE wio correction S Bl TL-NODE w/o correction
G I
. 50 = ‘.\\.' E
(Lower is * - . Baseline =
netter) (OURS) TL'NODE' Y9889 6accc 0
1.0 1 1 s Accuracy Train Time Eval Time NEE
0 i 10 15 20) (higher is (lower is (lower is (lower is
Training Steps (x 103) better) better) better) better)

Contact: fdjeumou@utexas.edu, cneary@utexas.edu | © C. Neary, 2022

	Slide 1

