Taylor-Lagrange Neural Ordinary Differential Equations: Towards Fast and Accurate Training of Neural ODEs

Franck Djeumou¹, Cyrus Neary ¹, Eric Goubault², Sylvie Putot², Ufuk Topcu¹

¹The University of Texas at Austin, United States ² LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, France

SYSTEMS GROUP

autonomous

The central question

How can we create a **fast method** to train neural ordinary differential equations (neural ODEs), without incurring **performance losses** in the trained model?

What are neural ODEs?

A class of deep learning models that uses neural networks to parametrize differential equations.

How do we evaluate neural ODEs?

Numerically solve the differential equation parametrized by the neural network $f_{\theta}(\cdot)$.

i.e. Given initial state x and prediction time T, solve:

The challenges of training Neural ODEs

Training Neural ODEs is **computationally expensive**:

- Model evaluations requires **numerical integration**.
- Parameter updates require gradient computations through the ODE solution.
- Empirically, numerical integration becomes more challenging as training progresses.

A summary of the approach

- 1. Use fixed timestep integration methods with a coarse temporal discretization to quickly obtain approximate evaluations.
- 2. Use a learned model to correct for the introduced integration errors.

Learning to predict unknown stiff dynamics

TL-NODE is **20x faster** than the baseline, and **5x more accurate** than other fixed-timestep methods.

Supervised classification task

Training and evaluating TL-NODEs is 16x faster than the baseline method while enjoying the same level of accuracy.

TL-NODEs requires the fewest number of evaluations (NFE) of $f_{\theta}(\cdot)$ per solution of the neural ODE.

Contact: fdjeumou@utexas.edu, cneary@utexas.edu | © C. Neary, 2022