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Novel capabilities of the framework:

1. Automatic decomposition of task specifications.

2. Targeted subsystem training to satisfy subtask specifications.

3. Iterative refinement of subtask specifications.

4. Modularity: prediction and verification in task transfer.

The high-level model High-level states 

defined by subtask 

entrance and exit 

conditions.

High-level 

actions 𝒄𝒊
correspond to 

subtasks.

Failure states are 

reached upon 

failure of any of 

the subtasks.

Success states 

are reached upon 

completion of the 

overall task.

Transition 

probabilities 𝒑𝒄𝒊
correspond to 

probabilities of 

subtask success.

Task specification: With probability 

1 − 𝛿, reach F𝑡𝑎𝑟𝑔 from initial state      

while avoiding unsafe lava states       .

The central question How can we build compositional 

reinforcement learning systems with verifiable properties? How 

can we break tasks into specific requirements for subsystems?

Why build compositional RL systems? 
To reduce the complexity of individual subsystems. System-level 

requirements may be decomposed into component level ones. 

Each component may be developed and tested independently, 

and the satisfaction of component-level requirements may be 

used to place assurances on the system as a whole.

A summary of the approach
We build a high-level system model capturing the interfaces 

between subsystems. The model is used to automatically

synthesize subtask specifications for the low-level subsystems, 

each of which is implemented as an independent RL agent.

Numerical experiments
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Automatic decomposition of task specifications

Iterative compositional reinforcement learning

Relating the high-level model to the environment

An illustrative labyrinth navigation example

Subsystems: 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 

𝑐7, 𝑐8, 𝑐9, 𝑐10, 𝑐11
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Subsystem training schedule

Subsystem success probabilities

The framework automatically identified two candidate routes.

Route 1: Short but risky route using 𝑐0, 𝑐4, 𝑐5, 𝑐9 to navigate

past the lava to reach the goal.

Route 2: Long but reliable route using 𝑐1, 𝑐3, 𝑐8, 𝑐10, 𝑐11 to 

reach to the goal while avoiding the lava altogether.

Initially, the algorithm trains the subsystems for route 1. When 

subsystem 𝑐4 is unable to meet its subtask specification due to 

the risk posed by the lava, the algorithm automatically re-

routes, and begins training the subsystems for route 2.

Once all the subsystems for route 2 meet their subtask 

specifications, their composition satisfies the task specification.

Automatically generated subtask specification values

Indicates that the subsystem is deployed by the route.
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Compositional system 

task success probability

We tested the framework on discrete and continuous versions of the labyrinth navigation example.

Empirically measured 

Predicted by high-level model

Training for route 1
Training for route 2

𝑃𝑟𝑜𝑏
Compositional system 

completes its task in 

the true environment.

≤

HLM Transition

Probability 𝑝𝑐
≤

Success probability 

of subsystem 𝑐
for every 

subsystem 𝑐,
If

Then

𝑃𝑟𝑜𝑏
Reaching ǁ𝑠

✓

in the HLM

By iterating between synthesizing subtask specifications and training subsystems to satisfy them,  

we arrive at the proposed compositional reinforcement learning algorithm:

The labyrinth is broken into subsystems: 

each room corresponds to a subtask.

The Problem: Synthesize subtask performance requirements, 

train RL subsystems to satisfy them, and compute a meta-policy 

such that the compositional system satisfies the task specification.

Problem formulation 

Environment: Modeled as an unknown Markov decision process.

Task specification: Reach a target set of states with a specified 

probability of success. 

Subsystems: Deploy RL-trained policies to accomplish subtasks.

Compositional system: A meta-policy that deploys subsystems in 

order to accomplish the task specification.

min
𝑝𝑐

෍

𝑐

𝑝𝑐

s. t.

Encoding of the High-level model

1 − 𝛿

Additional constraints(𝑝𝑐)

𝑃𝑟𝑜𝑏
Reaching ǁ𝑠

✓

in the HLM
≤

Synthesize small subtask specifications values 𝑝𝑐, such that a 

composite system exists that satisfies the task specification.  

How can we use the high-level model to break task 

specifications into necessary requirements for the subsystems?

Interpret HLM transition probability values 𝑝𝑐 as subtask 

specifications — required probabilities of subtask success.

Training for route 2
Training for route 1

The high-level model is a parametric Markov decision process.
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