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Cooperative multi-agent RL: A team of agents learn interact in a shared 
environment to achieve a common objective.

Observation: Often, agents only interact in several crucial moments of the task.

Objectives: 
1) Present a framework for specifying structured 

representations of team tasks.
2) Use this specification to decompose problem into necessary 

individual behaviors.
3) Present a reinforcement learning algorithm that uses 

decomposition to simplify multi-agent learning.
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Reward Machine Projection

How does the reward machine change if one only has access to events from 𝚺𝐢 ⊆ 𝚺?

Projected Reward Machine 𝑅1

Projected Reward Machine 𝑅2

Projected Reward Machine 𝑅3

Note: reward machine projections may be 
computed automatically.

Projected reward machines encode the sub-tasks of 
individual agents who only observe events in Σ𝑖.
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Observation: Agent 𝑖 may use 𝑅𝑖 to learn its subtask, 
without observing the states of its teammates.
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Decentralized Q-Learning with Projected Reward Machines (DQPRM)

Team reward machine 𝑅

Independent Q-Learners

DQPRM (our method)

Hierarchical Independent Learners

Comparisons to baselines (lower is better)



DQPRM Scaling with the Number of Agents

Rendezvous Experiment

Team Task: Each agent must simultaneously
occupy the rendezvous location      , before 
proceeding to their respective goals      .



DQPRM Scaling with the Number of Agents

Rendezvous Experiment

Team Task: Each agent must simultaneously
occupy the rendezvous location      , before 
proceeding to their respective goals      .

• Two agent rendezvous.



DQPRM Scaling with the Number of Agents

Rendezvous Experiment

Team Task: Each agent must simultaneously
occupy the rendezvous location      , before 
proceeding to their respective goals      .

• Two agent rendezvous.



DQPRM Scaling with the Number of Agents

Rendezvous Experiment

Team Task: Each agent must simultaneously
occupy the rendezvous location      , before 
proceeding to their respective goals      .

• Ten agent rendezvous.



DQPRM Scaling with the Number of Agents

Rendezvous Experiment

Team Task: Each agent must simultaneously
occupy the rendezvous location      , before 
proceeding to their respective goals      .

• Ten agent rendezvous.



Each agent learns in the 
absence of its teammates.

DQPRM scales well with the number of agents.



Each agent learns in the 
absence of its teammates.

Composite behavior 
accomplishes the team task.

DQPRM scales well with the number of agents.



Two agent rendezvous

Ten agent rendezvous

DQPRM scales well with the number of agents.

Independent Q-Learners

Centralized Q-Learning with 
Reward MachinesDQPRM (our method)

Hierarchical Independent Learners

Independent Q-Learners

DQPRM (our method)

Hierarchical Independent Learners
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